Abstract

The infrastructure safety and response to the natural or man-caused calamities has always been a top consideration for any modern project. Impact energy absorption is one such area where advanced measures are being adopted to prevent any damage to the infrastructure from any impact caused by vehicles or other elements. Honeycomb structures have been primarily used in such high impact energy absorption applications. With the advent of modern additive manufacturing practices, drastic modifications to the simple honeycombs generally used are possible, thus expanding the reach and capability of these structures. In this article, in-plane uniaxial compression performance of hybrid and hierarchical hexagonal honeycombs has been studied in the context of strain energy absorption for in-plane impact such as the case of vehicle collision to the pillars of flyover or bridges. The polylactic acid (PLA) filament has been used to manufacture the honeycombs through fused deposition modeling (FDM) additive manufacturing technique. Simple hexagonal honeycombs have been studied first at low deformation speed to understand the deformation mechanics under uniaxial compression and its dependence on the unit cell dimensions and cell wall thickness. The effect of transition to the hybrid and hierarchical hexagonal honeycombs on the compression deformation has been highlighted next. While the hierarchical structures show better energy absorption capabilities and plateau stress, the hybrid hexagonal honeycombs show their high loadresistance. Dependence of the mechanical performance of such structures on the unit cell dimensions, orientation and wall thickness has also been examined through detailed experimental analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.