Abstract

The solid electrolyte interphase (SEI) is an electronic insulating layer which highly affects the performance of lithium-ion batteries, especially when electrodes with low (de-)intercalation potentials such as graphite are employed. The formation of the SEI was investigated in-operando on graphite when vinylene carbonate (VC) was present as an additive in solution using feedback-mode SECM. The potential at which the surface started to become insulating was at 0.8 V vs. Li/Li+ in VC-free electrolytes, while it was at 1.3 V in VC-containing electrolytes. Nevertheless, potentials more cathodic than 0.8 V have to be reached to form a homogeneous SEI. No influence in the electronic properties of the formed SEI with different concentrations of VC was observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.