Abstract

Two types of microfluidic systems, a porous hollow fiber and a thin supported membrane with an array of micromachined holes, are investigated for concentrating mass-limited analyte samples. Water evaporation is driven by the partial pressure difference across the hydrophobic membrane, induced by dry sweeping gas on the permeate side. An analytical model permitting clarification of the contribution of design and process parameters on acquisition of concentrated solution and prediction of achievable concentration factors is presented. Concentrating an exemplary solution utilizing the two systems has been studied at different experimental conditions to validate the model. The results show that the hollow fiber gives controllable concentration factors of more than 10. For the micromachined membrane concentrator concentration factors of 6-8 were achieved, at much lower flow rates than predicted by the model. Because of the asymptotic dependence of concentration factor on flow rate, accurate control of the liquid feed is extremely critical in the flow rate range where high concentration factors are obtained, and the smallest variations in liquid flow rate may easily lead to supersaturation and deposition of solutes in the pores. This changes membrane porosity in an unpredictable way and limits the maximum attainable concentration factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.