Abstract

AbstractWe analyze the hereditarily ordinal definable sets $\operatorname {HOD} $ in $M_n(x)[g]$ for a Turing cone of reals x, where $M_n(x)$ is the canonical inner model with n Woodin cardinals build over x and g is generic over $M_n(x)$ for the Lévy collapse up to its bottom inaccessible cardinal. We prove that assuming $\boldsymbol \Pi ^1_{n+2}$ -determinacy, for a Turing cone of reals x, $\operatorname {HOD} ^{M_n(x)[g]} = M_n(\mathcal {M}_{\infty } | \kappa _{\infty }, \Lambda ),$ where $\mathcal {M}_{\infty }$ is a direct limit of iterates of $M_{n+1}$ , $\delta _{\infty }$ is the least Woodin cardinal in $\mathcal {M}_{\infty }$ , $\kappa _{\infty }$ is the least inaccessible cardinal in $\mathcal {M}_{\infty }$ above $\delta _{\infty }$ , and $\Lambda $ is a partial iteration strategy for $\mathcal {M}_{\infty }$ . It will also be shown that under the same hypothesis $\operatorname {HOD}^{M_n(x)[g]} $ satisfies $\operatorname {GCH} $ .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call