Abstract

AbstractWe determine the consistency strength of determinacy for projective games of length ω2. Our main theorem is that $\Pi _{n + 1}^1 $-determinacy for games of length ω2 implies the existence of a model of set theory with ω + n Woodin cardinals. In a first step, we show that this hypothesis implies that there is a countable set of reals A such that Mn (A), the canonical inner model for n Woodin cardinals constructed over A, satisfies $$A = R$$ and the Axiom of Determinacy. Then we argue how to obtain a model with ω + n Woodin cardinal from this.We also show how the proof can be adapted to investigate the consistency strength of determinacy for games of length ω2 with payoff in $^R R\Pi _1^1 $ or with σ-projective payoff.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.