Abstract

In-grown stacking faults (IGSFs) were studied in 4H-SiC homoepitaxial growth from a SiH2Cl2-C3H8-H2 system. Most of the IGSFs, start from the epilayer/substrate interface, and exhibit photoluminescence emission peak at 2.58 eV (480 nm) indicating of 8H polytype. The growth parameters, including growth temperature, growth pressure, growth rate, hydrogen etching, et al., varied around the regular growth condition do not show a significant effect on the IGSF generation. Reactor furniture is identified to be a major reason of IGSF formation, especially when the insulation part of the furnace is not completely isolated from the growth zone. Dusting of insulation material is crucial in the formation of IGSFs. When using graphite felt as the insulation material, the IGSF density in the epilayer can be as high at ~104 cm-2. Improvement of the insulation material by using graphite foil reduces the density to 30-100 cm-2. Further reduction of IGSF density to less than 10 cm-2 is achieved by mild pretreatment of the substrate in molten KOH-NaOH eutectic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call