Abstract
A silicon micropillar filter (μPF) chip was fabricated, glass-bonded, coated with 3-aminopropyltriethoxysilane (APTES) then tested for its ability to bind and release pre-purified DNA in continuous flow mode. APTES coated μPF was tested over different DNA initial loading amounts and flow rates. Simple and effective washing and eluting steps were used, which allowed direct detection of obtained DNA using UV Nano-Droplet. Both the capture efficiency and elution % were inversely proportional to flow rate, with such relation being more profound at higher DNA concentration. DNA elution recovery %, as high as 80%, was achieved under flow rate of 5 μl /min and an initial DNA loading of 250 ng. The capture capacity per surface area of the APTES-coated μPFis ~186 ng/cm2, which mounts to ~3.7 times the capacity of an identical uncoated filter. These results demonstrate the potential for integrating such amino-coated μPF in a lab-on-a-chip system for the extraction of nucleic acids directly from clinical samples in a continuous flow mode.
Highlights
The prospect for the commercialization of microfluidic LOC systems has powered over the recent decade, in particular for medical and the life science diagnostic applications
The DNA extraction step has been shown to play an important role in various subsequent analysis steps, including Polymerase Chain Reactions (PCR) [2], DNA hybridization [3], DNA biosensors [4], capillary electrophoresis [5], etc
Sulfuric acid (98% v/v) and hydrogen peroxide (30% v/v) were obtained from Fluka (USA), while all other reagents, including 3 aminopropyltriethoxysilane (APTES) and Sybr Green dye were purchased from Sigma-Aldrich (USA)
Summary
The prospect for the commercialization of microfluidic LOC systems has powered over the recent decade, in particular for medical and the life science diagnostic applications. This development has been prompted by creating massive surface area such as integrated architectures, and extremely functional lab-on-a-chip technologies [1]. Despite its importance and a plethora of available DNA extraction techniques, new methods to further simplify DNA extraction directly on chip are still needed, specially, as many methods use reagents or operational steps that are not compatible with standard microfluidic devices. Traditional chemical DNA extraction techniques entail the use of centrifugation and organic solvents to purify DNA
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.