Abstract

A vector curvature and temperature sensor based on an in-fiber hybrid microstructure is proposed and experimentally demonstrated. The proposed scheme enables the dimensions of the Fabry–Perot and Mach–Zehnder hybrid interferometer to be adjusted for the formation of the Vernier effect by simply changing the length of a single optical fiber. The sensor is fabricated using a fiber Bragg grating (FBG), multimode fiber (MMF), and a single-hole dual-core fiber (SHDCF). The sensor exhibits different curvature sensitivities in four vertical directions, enabling two-dimensional curvature sensing. The temperature and curvature sensitivities of the sensor were enhanced to 100 pm/°C and −25.55 nm/m−1, respectively, and the temperature crosstalk was minimal at −3.9 × 10−3 m−1/°C. This hybrid microstructure sensor technology can be applied to high-sensitivity two-dimensional vector curvature and temperature detection for structural health monitoring of buildings, bridge engineering, and other related fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.