Abstract
Leucine-rich repeat kinase 2 (LRRK2) inhibition is a promising disease-modifying therapy for LRRK2-associated Parkinson's disease (L2PD) and idiopathic PD (iPD). However, pharmaco-dynamic readouts and progression biomarkers for clinical trials aiming for disease modification are insufficient since no endogenous marker reflecting enhanced kinase activity of the most common LRRK2 G2019S mutation has been reported yet in L2PD patients. Employing phospho-/proteomic analyses we assessed the impact that LRRK2 activating mutations had in peripheral blood mononuclear cells (PBMCs) from a LRRK2 clinical cohort from Spain (n=174). The groups of study encompassed G2019S L2PD patients (n=37), non-manifesting LRRK2 mutation carriers of G2019S, here, G2019S L2NMCs (n=27), R1441G L2PD patients (n=14), R1441G L2NMCs (n=11), iPD patients (n=40), and healthy controls (n=45). We identified 207 differential proteins in G2019S L2PD compared to controls (39 up/168 down) and 67 in G2019S L2NMCs (10 up/57 down). G2019S down-regulated proteins affected the endolysosomal pathway, proteostasis, and mitochondria, e.g., ATIC, RAB9A, or LAMP1. At the phospho-proteome level, we observed increases in endogenous phosphorylation levels of pSer106 RAB12 in G2019S carriers, which were validated by immunoblotting after 1 year of follow-up (n=48). Freshly collected PBMCs from 3 G2019S L2PD, 1 R1441G L2PD, 1 iPD, and 5 controls (n=10) showed strong diminishment of pSer106 RAB12 phosphorylation levels after in-vitro administration of the MLi-2 LRRK2 inhibitor. Using machine learning, we identified an 18-feature G2019S phospho-/protein signature discriminating G2019S L2PD, L2NMCs, and controls with 96% accuracy that correlated with disease severity, i.e., UPDRS-III motor scoring. Using easily accessible PBMCs from a LRRK2 clinical cohort, we identified elevated levels of pSer106 RAB12 as an endogenous biomarker of G2019S carriers. Our data suggest that monitoring pSer106 RAB12 phosphorylation could be a relevant biomarker for tracking LRRK2 activation, particularly in G2019S carriers. Future work may determine whether pSer106 RAB12 could help with patient enrichment and monitoring drug efficacy in LRRK2 clinical trials.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have