Abstract
Surface patterning in the micro- and nanometer-range by means of pulsed laser interference has repeatedly proven to be a versatile tool for surface functionalization. With these techniques, however, the surface is often changed not only in terms of morphology but also in terms of surface chemistry. In this study, we present an in-depth investigation of the chemical surface modification occurring during surface patterning of copper by ultrashort pulsed direct laser interference patterning (USP-DLIP). A multimethod approach of parallel analysis using visualizing, topography-sensitive, and spectroscopic techniques allowed a detailed quantification of surface morphology as well as composition and distribution of surface chemistry related to both processing and atmospheric aging. The investigations revealed a heterogeneous surface composition separated in peak and valley regions predominantly consisting of Cu2O, as well as superficial agglomerations of CuO and carbon species. The evaluation was supported by a modeling approach for the quantification of XPS results in relation to heterogeneous surface composition, which was observed by means of a combination of different spectroscopic techniques. The overall results provide a detailed understanding of the chemical and topographical surface modification during USP-DLIP, which allows a more targeted use of this technology for surface functionalization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.