Abstract

The objective of this work was to evaluate the feasibility of transdermal delivery of two widely prescribed dementia drugs for the Alzheimer's disease. In this regard, the drug in adhesive patches of memantine (ME) co-loaded with donepezil (DO) was prepared using an ethylene vinyl acetate polymer and characterized for drug content, the crystallinity of drugs in the polymer matrix, and in vitro permeation. To understand the different physical and chemical processes underlying the percutaneous absorption, it is required to employ a comprehensive model that accounts for the anatomy and physiology of the skin. A transdermal physiologically based pharmacokinetic (TPBPK) model was developed and was integrated in a compartmental pharmacokinetic model to predict the plasma drug concentrations in rats. The model predictions showed a good fit with the experimental data, as evaluated by the prediction error calculated for both drugs. It was evident from the simulations that the drug diffusivity and partition coefficient in the polymer matrix are the critical parameters that affect the drug release from the vehicle and subsequently influence the in vivo pharmacokinetic profile. Moreover, a correlation function was built between the in vitro permeation data and in vivo absorption for both ME and DO. A good point-to-point in vitro/in vivo correlation (IVIVC, Level A correlation) was achieved by predicting the plasma concentrations with convolution for the entire study duration. The results of our study suggested that the implementation of mechanistic modeling along with IVIVC can be a valuable tool to evaluate the relative effects of formulation variables on the bioavailability from transdermal delivery systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.