Abstract

A new technique for polymer microchannel surface modification, called in-channel atom-transfer radical polymerization, has been developed and applied in the surface derivatization of thermoset polyester (TPE) microdevices with poly(ethylene glycol) (PEG). X-ray photoelectron spectroscopy, electroosmotic flow (EOF), and contact angle measurements indicate that PEG has been grafted on the TPE surface. Moreover, PEG-modified microchannels have much lower and more pH-stable EOF, more hydrophilic surfaces and reduced nonspecific protein adsorption. Capillary electrophoresis separation of amino acid and peptide mixtures in these PEG-modified TPE microchips had good reproducibility. Phosducin-like protein and phosphorylated phosducin-like protein were also separated to measure the phosphorylation efficiency. Our results indicate that PEG-grafted TPE microchips have broad potential application in biomolecular analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.