Abstract
We report a substantial increase in the quality and photoluminescence (PL) emission efficiency of In(AsN) dilute nitride alloys grown on both p-type InAs and semi-insulting GaAs substrates, in response to rapid thermal annealing. At 4K the PL emission efficiency increases by 25 times due to a reduction in non-radiative Shockley–Read–Hall recombination originating from elimination of point defects. For annealing temperatures up to 500°C the activation energy for thermal quenching increases by a factor of three, with no change in the residual electron concentration and mobility. Temperature dependent PL, together with X-ray diffraction measurements, reveals an improvement in compositional uniformity. Our results are significant for photonic device applications and particularly for the development of cryogenic mid-infrared photodiodes, monolithic detectors and focal plane arrays.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.