Abstract

Median timing of reproduction in salmonid populations is generally consistent among years, reflecting long-term patterns of natural selection from characteristics of the local environment. However, altered selection from factors related to climate change or human intervention might shift timing over generations, with implications for the population’s persistence. To study these processes, we modeled median timing of redd (nest) counts as an index of spawning timing by natural-origin Chinook salmon (Oncorhynchus tshawytscha) in the Skagit River system in Washington State, USA. Over the last 2–6 decades, natural-origin salmon have been spawning later by 0.03–0.52 days·year–1, while a naturally spawning group that is influenced by strays from a hatchery has been spawning earlier by 0.19 days·year–1. Trends in the spawning timing of hatchery-origin strays may reflect opposing selection from the hatchery, where egg take for propagation has become earlier by 0.58 days·year–1. As mean August river temperatures have risen over the period of record, hatchery timing trends may be moving in the opposite direction from the plastic or adaptive patterns expressed by natural-origin fish.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.