Abstract

Electron beam melting (EBM) systems have been used to improve the purity of metallurgical grade silicon feedstock for photovoltaic application. Our advanced EBM system is able to effectively remove volatile impurities using a heat source with high energy from an electron gun and to continuously allow impurities to segregate at the top of an ingot solidified in a directional solidification (DS) zone in a vacuum chamber. Heat in the silicon melt should move toward the ingot bottom for the desired DS. However, heat flux though the ingot is changed as the ingot becomes longer due to low thermal conductivity of silicon. This causes a non-uniform microstructure of the ingot, finally leading to impurity segregation at its middle. In this research, EB power irradiated on the silicon melt was controlled during the ingot growth in order to suppress the change of heat flux. EB power was reduced from 12 to 6.6 kW during the growth period of 45 min with a drop rate of 0.125 kW/min. Also, the silicon ingot was grown under a constant EB power of 12 kW to estimate the effect of the drop rate of EB power. When the EB power was reduced, the grains with columnar shape were much larger at the middle of the ingot compared to the case of constant EB power. Also, the present research reports a possible reason for the improvement of ingot purity by considering heat flux behaviors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call