Abstract

Impurities in carbon nanotubes give rise to rich physics due to the honeycomb lattice structure. We concentrate on the conductance through a point-like defect in metallic zigzag carbon nanotube via the Landauer-Büttiker approach. At low bias, the conductance is suppressed due to the presence of an additional impurity state existing only on one of the sublattices. In consequence, the suppression is exactly half of the perfect conductance without impurity. Furthermore, there exists a transport resonance at larger bias where the perfect conductance is recovered as if the impurity were absent. Implications of these conductance anomalies are elaborated and experimental detections in realistic carbon nanotubes are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call