Abstract

Thermal conductivity of metallic zigzag carbon nanotube is investigated in the context of Holstein model. Green's function approach is implemented to calculate the electronic contribution of thermal conductivity as a function of radius of carbon nanotube, temperature and electron phonon coupling strength. Our results show that electronic thermal conductivity increases as a function of temperature at low temperature and gets a maximum value then decays at high temperature. Also the effect of radius of both metallic and semiconductor zigzag carbon nanotube on the thermal conductivity is studied. Our results show thermal conductivity increases when CNT diameter increases and decreases with electron phonon interaction strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.