Abstract

The impurity effect on commercial purity copper (4 N and 3 N) was investigated by comparing their annealing induced recrystallization and grain growth behavior after severe plastic deformation. Equal channel angular pressing (ECAP) with additional cryogenic rolling was applied to produce equiaxed ultra-fine grained (UFG) and nano-laminated (NL) coppers with high stored excess energy. The stored excess energy increased with decreasing purity from 4 N to 3 N, whereas the grain boundary velocity and recrystallized grain size decreased for both UFG and NL Cu. In particular, the NL structures were found to be more sensitive to impurities than equiaxed ultra-fine grained ones, and consequently the abnormal grain growth at the early stages of recrystallization in NL 4 N Cu was effectively suppressed in NL 3 N Cu. The analysis of the grain growth rate during recrystallization, using the microstructural path methodology (MPM), demonstrates that the correlation between the abnormal grain growth and the significantly enhanced grain boundary mobility cannot be solely explained by the high stored excess energy. Under all conditions, the impurity drag effect poses a kinetic constraint on the rate-controlling mechanism for grain boundary migration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.