Abstract
Developed information technology boosts interest to use non-cash payment media in many areas. Following the high usage of a non-cash scheme in many payment transactions recently, the objective of this work is two-fold that is to predict the total of a non-cash transaction by using various time-series models and to compare the forecasting accuracy of those models. As a country with a mostly dense Moslem population, plenty of economical activities are arguably influenced by the Islamic calendar effect. Therefore the models being compared are ARIMA, ARIMA with Exogenous (ARIMAX), and a hybrid between ARIMAX and Adaptive Neuro-Fuzzy Inference Systems (ANFIS). By taking such calendar variation into account, the result shows that ARIMAX-ANFIS is the best method in predicting non-cash transactions since it produces lower MAPE. It is indicated that non-cash transaction increases significantly ahead of Ied Fitr occurrence and hits the peak in December. It demonstrates that the hybrid model can improve the accuracy performance of prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Indonesian Journal of Statistics and Its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.