Abstract
This paper proposes the optimization relaxation approach based on the analogue Hopfield Neural Network (HNN) for cluster refinement of pre-classified Polarimetric Synthetic Aperture Radar (PolSAR) image data. We consider the initial classification provided by the maximum-likelihood classifier based on the complex Wishart distribution, which is then supplied to the HNN optimization approach. The goal is to improve the classification results obtained by the Wishart approach. The classification improvement is verified by computing a cluster separability coefficient and a measure of homogeneity within the clusters. During the HNN optimization process, for each iteration and for each pixel, two consistency coefficients are computed, taking into account two types of relations between the pixel under consideration and its corresponding neighbors. Based on these coefficients and on the information coming from the pixel itself, the pixel under study is re-classified. Different experiments are carried out to verify that the proposed approach outperforms other strategies, achieving the best results in terms of separability and a trade-off with the homogeneity preserving relevant structures in the image. The performance is also measured in terms of computational central processing unit (CPU) times.
Highlights
In recent years, the increasing number of Polarimetric Synthetic Aperture Radar (PolSAR) sensors has been demanding solutions for different applications based on the data they provide
We propose a new method based on a Hopfield Neural Network (HNN) optimization approach, initially proposed by Hopfield and Tank [14,15]
This paper focuses on the performance of the optimization Hopfield Neural Network (HNN)
Summary
The increasing number of Polarimetric Synthetic Aperture Radar (PolSAR) sensors has been demanding solutions for different applications based on the data they provide. Cloude and Pottier [8,9,10] proposed a method to extract averaged parameters from experimental PolSAR data using a smoothing algorithm based on second order statistics. This method is based on the eigen-analysis of the coherency matrix, where the mean scattering mechanism is characterized by the entropy H and the mean alpha angle that are employed for its classification. Pottier and Lee [11] proposed another unsupervised classification method that improves the capability to distinguish between different classes whose cluster centers end in the same zone, considering the anisotropy parameter A
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.