Abstract

Several automatic methods have been developed to classify sea ice types from fully polarimetric synthetic aperture radar (SAR) images, and these techniques are generally grouped into supervised and unsupervised approaches. In previous work, supervised methods have been shown to yield higher accuracy than unsupervised techniques, but suffer from the need for human interaction to determine classes and training regions. In contrast, unsupervised methods determine classes automatically, but generally show limited ability to accurately divide terrain into natural classes. In this paper, a new classification technique is applied to determine sea ice types in polarimetric and multifrequency SAR images, utilizing an unsupervised neural network to provide automatic classification, and employing an iterative algorithm to improve the performance. The learning vector quantization (LVQ) is first applied to the unsupervised classification of SAR images, and the results are compared with those of a conventional technique, the migrating means method. Results show that LVQ outperforms the migrating means method, but performance is still poor. An iterative algorithm is then applied where the SAR image is reclassified using the maximum likelihood (ML) classifier. It is shown that this algorithm converges, and significantly improves classification accuracy. The new algorithm successfully identifies first-year and multiyear sea ice regions in the images at three frequencies. The results show that L- and P-band images have similar characteristics, while the C-band image is substantially different. Classification based on single features is also carried out using LVQ and the iterative ML method. It is found that the fully polarimetric classification provides a higher accuracy than those based on a single feature. The significance of multilook classification is demonstrated by comparing the results obtained using four-look and single-look classifications.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call