Abstract

Forest fires are able to cause significant damage to humans and the earth's fauna and flora. If a fire is not detected and extinguished before it spreads, it can have disastrous results. In addition to satellite images, recent studies have shown that exploring both weather and topography characteristics is crucial for effectively predicting the propagation of wildfires. In this paper, we present FU-NetCastV2, a deep learning convolutional neural network for fire spread and burned area mapping. This algorithm predicts which areas around wildfires are at high risk of future spread. With an accuracy of 94.6% and an AUC of 97.7%, the model surpassed the literature by 3.7% and exhibited a 1.9% improvement over our previous model. The proposed approach was implemented using consecutive forest wildfire perimeters, satellite images, Digital Elevation Model maps, aspect, slope and weather data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.