Abstract

Breadth-first search (BFS) is an important kernel for graph traversal and has been used by many graph processing applications. Extensive studies have been devoted in boosting the performance of BFS. As the most effective solution, GPU-acceleration achieves the state-of-the-art result of 3.3×109 traversed edges per second on a NVIDIA Tesla C2050 GPU. A novel vertex frontier based GPU BFS algorithm is proposed, and its main features are three-fold. Firstly, to obtain a better workload balance for irregular graphs, a virtual-queue task decomposition and mapping strategy is introduced for vertex frontier expanding. Secondly, a global deduplicate detection scheme is proposed to remove reduplicative vertices from vertex frontier effectively. Finally, a GPU-based bottom-up BFS approach is employed to process large frontier. The experimental results demonstrate that the algorithm can achieve 10% improvement over the state-of-the-art method on diverse graphs. Especially, it exhibits 2–3 times speedup on low-diameter and scale-free graphs over the state-of-the-art on a NVIDIA Tesla K20c GPU, reaching a peak traversal rate of 11.2×109 edges/s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.