Abstract
The Breadth-First Search (BFS) algorithm serves as the foundation for many graph-processing applications and analytics workloads. While Graphics Processing Unit (GPU) offers massive parallelism, achieving high-performance BFS on GPUs entails efficient scheduling of a large number of GPU threads and effective utilization of GPU memory hierarchy. In this paper, we present Enterprise, a new GPU-based BFS system that combines three techniques to remove potential performance bottlenecks: (1) streamlined GPU threads scheduling through constructing a frontier queue without contention from concurrent threads, yet containing no duplicated frontiers and optimized for both top-down and bottom-up BFS. (2) GPU workload balancing that classifies the frontiers based on different out-degrees to utilize the full spectrum of GPU parallel granularity, which significantly increases thread-level parallelism; and (3) GPU based BFS direction optimization quantifies the effect of hub vertices on direction-switching and selectively caches a small set of critical hub vertices in the limited GPU shared memory to reduce expensive random data accesses. We have evaluated Enterprise on a large variety of graphs with different GPU devices. Enterprise achieves up to 76 billion traversed edges per second (TEPS) on a single NVIDIA Kepler K40, and up to 122 billion TEPS on two GPUs that ranks No. 45 in the Graph 500 on November 2014. Enterprise is also very energy-efficient as No. 1 in the GreenGraph 500 (small data category), delivering 446 million TEPS per watt.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.