Abstract

Accurate forecast of citywide crowd flows on flexible region partition benefits urban planning, traffic management, and public safety. Previous research either fails to capture the complex spatiotemporal dependencies of crowd flows or is restricted on grid region partition that loses semantic context. In this paper, we propose DeepFlowFlex, a graph-based model to jointly predict inflows and outflows for each region of arbitrary shape and size in a city. Analysis on cellular datasets covering 2.4 million users in China reveals dependencies and distinctive patterns of crowd flows in not only the conventional space and time domains, but also the speed domain, due to the diverse transportation modes in the mobility data. DeepFlowFlex explicitly groups crowd flows with respect to speed and time, and combines graph convolutional long short-term memory networks and graph convolutional neural networks to extract complex spatiotemporal dependencies, especially long-term and long-distance inter-region dependencies. Evaluations on two big cellular datasets and public GPS trace datasets show that DeepFlowFlex outperforms the state-of-the-art deep learning and big-data-based methods on both grid and non-grid city map partition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.