Abstract

ZrO2(Y2O3)-graphite composites with a three-dimensional (3D) continuous structure were prepared by using a core-shell design of graphite and ZrO2(Y2O3). The effect of structure on the friction-reducing and anti-wear mechanisms from room temperature to 700 °C was investigated. During high-temperature friction, abrasive wear and brittle fracture are the main wear mechanisms for ZrO2(Y2O3)-graphite composites with homogeneous composition. For the composites with 3D structure, the continuous ZrO2 matrix with high load-carrying capacity and the formation of a dense friction layer with self-lubricating and thermal oxidation resistance improve the tribological properties significantly, reducing the coefficient of friction by about 10% and the wear rate by nearly two orders of magnitude when coupled with GH4169 alloys at 600 °C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.