Abstract
Vehicular Ad Hoc Networks (VANETs) have widely been considered as a promising wireless communication technology to offer both vehicle safety and infotainment. Much research attention has been devoted to designing a multichannel MAC protocol in VANETs, with the aim of maximizing data throughput while ensuring collision-free deliveries of safety messages. For instance, in the coordinated multichannel medium access control (C-MAC) protocol, a time division multiple access (TDMA) approach is employed for the latter, and a balance of the rates is stricken for the former between successful requests for data transmissions and data transmissions that can be performed. However, C-MAC may suffer from channel underutilization as a contention-based mechanism is used to make reservations for data transmissions as well as to identify new vehicle arrivals at the coverage of a road side units (RSU). Two designs are thus proposed in this paper to improve channel utilization. Not only is TDMA better leveraged under both designs, but local information is utilized in one of the designs, which is regularly gathered at a vehicle by receiving beacons from neighboring vehicles. Simulations show either design can substantially outperform C-MAC in terms of throughput. Compare further between the two designs, though the one using local information can achieve a higher throughput than another retaining a vehicle identification process when vehicle intensity is low on a road, the reverse is true when it is high. A switching rule is then proposed and its accuracy is confirmed from numerical results.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have