Abstract
Endoglucanases provide an attractive avenue for the bioconversion of lignocellulosic materials into fermentable sugars to supply cellulosic feedstock for biofuels and other value-added chemicals. Thermostable endoglucanases with high catalytic activity are preferred in practical processes. To improve the thermostability and activity of the thermostable β-1,4-endoglucanase CTendo45 isolated from the thermophilic fungus Chaetomium thermophilum, structure-based rational design was performed by using site-directed mutagenesis. When inactivated mutation of the unique N-glycosylation sequon (N88-E89-T90) was implemented and the conserved Y173 residue was substituted with phenylalanine, a double mutant T90A/Y173F demonstrated enzymatic activity that dramatically increased 2.12- and 1.82-fold towards CMC-Na and β-D-glucan, respectively. Additionally, T90A/Y173F exhibited extraordinary heat endurance after 300 min of incubation at elevated temperatures. This study provides a valid approach to the improvement of enzyme redesign protocols and the properties of this endoglucanase mutant distinguish it as an excellent candidate enzyme for industrial biomass conversion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.