Abstract
Carbon nanotube (CNT) is a typical one-dimensional nanomaterial containing sp2 hybridization states. In this paper, we investigate the ballistic thermoelectric performance of CNTs incorporating graphene nanosprings by using non-equilibrium Green's function. The calculations reveal that the thermoelectric figure of merit could be obviously improved by introducing graphene nanosprings, which is about ten times of that of pristine CNTs at 700 K. Such enhancement is mainly attributed to the remarkable suppression of phononic and electronic thermal conductance and improvement of Seebeck coefficient. In addition, compared to the zigzag graphene nanospring, introducing of the armchair case possesses better thermoelectric performance. The results presented in this paper indicate that embedding graphene nanospring is a viable method to optimize the thermoelectric performance of CNTs and could provide useful theoretical guidance for design and fabrication of CNTs-based thermoelectric devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.