Abstract

Commercial aircrafts require insulation to protect passengers in the cabin from thermal and acoustic loads. The conventional insulation in aircrafts consists of blankets made from layers of glass wool wrapped in foil that keeps the glass wool from being adversely affected by the environment. There is a potential to improve the thermal and acoustic properties of the cabin by replacing the interior panels with conventional secondary insulation by new panels combined with vacuum insulation panels (VIP). This article is focusing on the study of the VIP integration into the interior panels. First, the new structure solutions are defined on the basis of a requirement analysis for interior panels and VIP and theoretical analysis. Second, the manufacturing feasibility study for the new solutions is performed. The results show that the new structures can be manufactured. Third, the thermal properties of the new structure solutions are measured. The test results show a decrease of thermal conductivity of the new panels by a factor of 3–6 compared to the conventional solutions. Finally, the impact of the hot molding press on the vacuum maintaining inside the VIP is investigated. The trials demonstrate that the high barrier films can withstand high-temperature and pressure conditions and that the thermal conductivity of the test specimens didn’t worsen after 1 year.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call