Abstract

This document deals with the thermal characterization of a building with a layer of straw above the high floor. In the current environmental context, in Senegal, buildings are the biggest consumers of energy. This is due to the construction materials used. Almost of buildings in Senegal used concrete (cement + aggregates) as based material construction. Due to this, the buildings require air conditioning or artificial ventilation to ensure minimum comfort. In face of this situation, it becomes useful to propose methods for reducing this high energy consumption. In this work, we propose to add a layer of straw above the high floor of a building in Matam city (North Senegal). In this case, we designed and modeled one building of single room in which the walls are in briks and a concrete slab. A bale of straw is layered on this slab in order to determine its influence on the energy consumption of the building. This study shows that the straw has a strong influence on the energy consumption of a building and the slab + straw building is more energy efficient than the bare slab building.

Highlights

  • The question of the rational use of energy has been imposed in recent years, with the aim of opposing the increase in its cost and the disastrous consequences on the environment

  • This study shows that the straw has a strong influence on the energy consumption of a building and the slab + straw building is more energy efficient than the bare slab building

  • We propose to layer straw, which is used as a building material in rural areas in particular, above the high floor

Read more

Summary

Introduction

The question of the rational use of energy has been imposed in recent years, with the aim of opposing the increase in its cost and the disastrous consequences on the environment. These energy and environmental challenges have motivated industrialized countries to consider seriously the issue. Forums and panels are working on the energy and the importance of its control. Air conditioning systems consume large amounts of energy to ensure conditions

Diouf et al DOI
Mathematical Model
Parameters Estimation
Methodology
Steady State
Findings
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.