Abstract

In this work, a post-synthetic modification strategy was attempted to improve the performance of the probe for sulfite detection. The assembled platform UiO-66-NH-DQA, which was acquired by anchoring the sulfite-response fluorescent probe DQA onto the surface of UiO-66-NH2via amide covalent bonds, exhibited enhanced fluorescence intensity and practical intracellular imaging capability. In spite of the structural similarity, as verified by characterization tests, the conversion rate of post-synthetic modification was calculated as 35%, equaling an approximate assembly ratio of 1 : 2 between UiO-66-NH2 and DQA. Most significantly, conversion into UiO-66-NH-DQA led to a 5.6-fold enhancement in the reporting signal with a red shift of 20 nm. For sulfite detection, the linear range was 0-150 μM, with a limit of detection value of 0.025 μM. UiO-66-NH-DQA retained advantages including high stability (within pH 5.0-9.0), rapid response (within 15 min) and high selectivity. Based on low cytotoxicity and relatively rapid cellular uptake, UiO-66-NH-DQA achieved the imaging of both the exogenous and endogenous sulfite levels in living cells. In particular, its rapid cell-permeating capability was guaranteed during the modification. The post-synthetic modification strategy reported herein has potential for improving the practical properties of fluorescent monitoring materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.