Abstract

Quantum entanglement is essential in performing many quantum information tasks. Here, we theoretically investigate the stationary entanglement between a Laguerre-Gaussian (LG) cavity field and a rotating end mirror in an LG-cavity optorotational system with a nonlinear cross-Kerr (CK) interaction and a degenerate optical parametric amplifier (OPA). We calculate the logarithmic negativity of the system to quantify the stationary entanglement. We examine the influence of various system parameters such as the cavity detuning, the strength of the nonlinear CK interaction, the parametric gain and phase of the OPA, the power of the input Gaussian laser, the topological charge of the LG-cavity field, the mass of the rotating end mirror, and the ambient temperature on the stationary entanglement. Under the combined effect of the nonlinear CK interaction and the OPA, we find that the stationary entanglement can be substantially enhanced at lower Gaussian laser powers, smaller topological charges of the LG-cavity field, and larger masses of the rotating end mirror. We show that the combination of the nonlinear CK interaction and the OPA can make the stationary entanglement more robust against the ambient temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.