Abstract
AbstractTo improve the stability and activity of Pt catalysts for ethanol electro‐oxidation, Pt nanoparticles were selectively deposited on carbon‐nanotubes (CNTs)‐supported‐SnO2 to prepare Pt/SnO2/CNTs and Pt/CNTs was prepared by impregnation method for reference study. X‐ray diffraction (XRD) was used to confirm the crystalline structures of Pt/SnO2/CNTs and Pt/CNTs. The stabilities of Pt/SnO2/CNTs and Pt/CNTs were compared by analyzing the Pt size increase amplitude using transmission electron microscopy (TEM) images recorded before and after cyclic voltammetry (CV) sweeping. The results showed that the Pt size increase amplitude is evidently smaller for Pt/SnO2/CNTs, indicating the higher stability of Pt/SnO2/CNTs. Although both catalysts exhibit degradation of electrochemical active surface area (EAS) after CV sweeping, the EAS degradation for the former is lower, further confirming the higher stability of Pt/SnO2/CNTs. CV and potentiostatic current–time curves were recorded for ethanol electro‐oxidation on both catalysts before and after CV sweeping and the results showed that the mass specific activity of Pt/CNTs increases more than that of Pt/SnO2/CNTs, indicating that Pt/CNTs experiences more severe evolution and is less stable. The calculated area specific activity of Pt/SnO2/CNTs is larger than that of Pt/CNTs, indicating SnO2 can co‐catalyze Pt due to plenty of interfaces between SnO2 and Pt.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have