Abstract

Electrical contact resistance (ECR) measurements performed via conductive atomic force microscopy (C-AFM) suffer from poor reliability and reproducibility. These issues are due to a number of factors, including sample roughness, contamination via adsorbates, changes in environmental conditions such as humidity and temperature, as well as deformation of the tip apex caused by contact pressures and/or Joule heating. Consequently, ECR may vary dramatically from measurement to measurement even on a single sample tested with the same instrument. Here we present an approach aimed at improving the reliability of such measurements by addressing multiple sources of variability. In particular, we perform current-voltage spectroscopy on atomically flat terraces of highly oriented pyrolytic graphite (HOPG) under an inert nitrogen atmosphere and at controlled temperatures. The sample is annealed before the measurements to desorb adsorbates, and conductive diamond tips are used to limit tip apex deformation. These precautions lead to measured ECR values that follow a Gaussian distribution with significantly smaller standard deviation than those obtained under conventional measurement conditions. The key factor leading to this improvement is identified as the switch from ambient conditions to a dry nitrogen atmosphere. Despite these improvements, spontaneous changes in ECR are observed during measurements performed over several minutes. However, it is shown that such variations can be suppressed by applying a higher normal load.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.