Abstract

In this work, we discuss the possibility of reaching the Ziman conditions for collective heat transport in cubic bulk semiconductors, such as Si, Ge, AlAs and AlP. In natural and enriched silicon and germanium, the collective heat transport limit is impossible to reach due to strong isotopic scattering. However, we show that in hyper-enriched silicon and germanium, as well as in materials with one single stable isotope like AlAs and AlP, at low temperatures, normal scattering plays an important role, making the observation of the collective heat transport possible. We further discuss the effects of sample sizes, and analyse our results for cubic materials by comparing them to bulk bismuth, in which second sound has been detected at cryogenic temperatures. We find that collective heat transport in cubic semiconductors studied in this work is expected to occur at temperatures between 10 and 20 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.