Abstract

The slow adoption of Bridge Management Systems (BMSs) and its impractical future prediction of the condition rating of bridges are attributed to the inconsistency between BMS inputs and bridge agencies' existing data for a BMS in terms of compatibility and the enormous number of bridge datasets that include historical structural information. Among these, historical bridge element condition ratings are some of the key pieces of information required for bridge asset prioritisation but in most cases only limited data is available. This study addresses the abovementioned difficulties faced by bridge management agencies by using limited historical bridge inspection records to model time-series element-level data. This paper presents an Artificial Neural Network (ANN) based prediction model, called the Backward Prediction Model (BPM), for generating historical bridge condition ratings using limited bridge inspection records. The BPM employs historical non-bridge datasets such as traffic volumes, populations and climates, to establish correlations with existing bridge condition ratings from very limited bridge inspection records. The resulting model predicts the missing historical condition ratings of individual bridge elements. The outcome of this study can contribute to reducing the uncertainty in predicting future bridge condition ratings and so improve the reliability of various BMS analysis outcomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.