Abstract

PurposeSuccessful bridge management system (BMS) development requires a reliable bridge deterioration model, which is the most crucial component in a BMS. Historical condition ratings obtained from biennial bridge inspections are a major source for predicting future bridge deterioration in BMSs. However, historical condition ratings are very limited in most bridge agencies, thus posing a major barrier for predicting reliable future bridge performance. The purpose of this paper is to present a preliminary study as part of a long‐term research on the development of a reliable bridge deterioration model using advanced Artificial Intelligence (AI) techniques.Design/methodology/approachThis proposed study aims to develop a reliable deterioration model. The development work consists of two major Stages: stage 1 – generating unavailable bridge element condition rating records using the Backward Prediction Model (BPM). This helps to provide sufficient historical deterioration patterns for each element; and stage 2 – predicting long‐term condition ratings based on the outcome of Stage 1 using time delay neural networks (TDNNs).FindingsLong‐term prediction using proposed method can also be expressed in the same form of inspection records – element quantities of each bridge element can be predicted. The proposed AI‐based deterioration model does not ignore critical failure risks in small number of bridge elements in low condition states (CSs). This implies that the risk in long‐term predictions can be reduced.Originality/valueThe proposed methodology aims to utilise limited bridge inspection records over a short period to predict large datasets spanning over a much longer time period for a reliable, accurate and efficient long‐term bridge deterioration model. Typical uncertainty, due to the limitation of overall condition rating (OCR) method, can be minimised in long‐term predictions using limited inspection records.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.