Abstract

The genetic sexing strain (GSS) of the Mediterranean fruit fly (Ceratitis capitata (Wiedemann)) Vienna 8D53− is based on a male-linked translocation system and uses two selectable markers for male-only production, the white pupae (wp) and the temperature sensitivity lethal (tsl) genes. In this GSS, males emerge from brown pupae and are resistant to high temperatures while females emerge from white pupae, are sensitive to high temperatures. However, double homozygous females (wp tsl/wp tsl) exhibit a slower development rate compared to heterozygous males (wp+tsl+/wp tsl) during the larval stage, which was attributed to the pleiotropic effects of the tsl gene. We present the first evidence that this slower development is due to a different gene, here namely slow development (sd), which is closely linked to the tsl gene. Taking advantage of recombination phenomena between the two loci, we report the isolation of a novel temperature sensitivity lethal strain using the wp mutation as a morphological marker, which showed faster development (wp tsl FD) during the larval stage and increased in its temperature sensitivity compared with the normal tsl strain. Moreover, the introgression of this novel wp tsl FD combined trait into the Vienna 8D53− GSS, resulted in a novel Vienna 8D53− FD GSS, where females showed differences in the thermal sensibility, larval development speed, and productivity profiles. The modification of these traits and their impact on the mass rearing of the GSS for sterile insect technique applications are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call