Abstract

Improvement of the interfacial fracture toughness of the layer interfaces is one way to increase the performance of interlayer hybrid laminates containing standard thickness carbon/epoxy plies and make them fail in a stable, progressive way. The layer interfaces were interleaved with thermoset 913 type epoxy or thermoplastic acrylonitrile–butadienestyrene (ABS) films to introduce beneficial energy absorption mechanisms and promote the fragmentation of the relatively thick carbon layer under tensile loads. Carbon layer fragmentation and dispersed delamination around the carbon layer fractures characterised the damage modes of the epoxy film interleaved hybrid laminates, which showed pseudo-ductility in some cases. In the ABS film interleaved laminates, a unique phase-separated ABS/epoxy inter-locking structure was discovered at the boundary of the two resin systems, which resulted in a strong adhesion between the fibre-reinforced and the thermoplastic layers. As a result, the delamination cracks were contained within the ABS interleaf films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call