Abstract

Polyamide reverse osmosis membranes incorporating carboxy-functionalized multi-walled carbon nanotubes (MWNTs) were prepared by interfacial polymerization of metaphenylene diamine and trimesoyl chloride. The pristine MWNTs were pre-treated with mixed acids before being modified with diisobutyryl peroxide to enhance their dispersity and chemical activity. The prepared nanocomposite membranes had a 100–300nm skin layer and the modified MWNTs were embedded within the skin layer, which was confirmed by scanning electron microscopy and transmission electron microscopy. The surface of the nanocomposite membrane was shown to be more negatively charged than bare polyamide membrane. It was shown that with an increase in the carbon nanotube loading in the membrane, the membrane morphology changed distinctly, leading to a significantly improved flux without sacrificing the solute rejection. Meanwhile, the nanocomposite membranes showed better antifouling and antioxidative properties than MWNT-free polyamide membranes, suggesting that the incorporation of modified MWNTs in membranes is effective for improving the membrane performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.