Abstract

Aromatic polyamide membranes, which are prepared by interfacial polymerization of m-phenylene diamine (MPDA) in water solution and trimesoyl chloride (TMC) in organic solution, have been widely used as reverse osmosis (RO) membranes for desalination of seawater. However, it has been pointed out that polyamide RO membranes have weak resistance to chlorine, causing deteriorated separation performance. In this study, nanocomposite RO membranes containing multi-walled carbon nanotube (MWCNT) were developed to enhance the chlorine resistance of polyamide membranes. The resulting membranes were analyzed and tested to see the desalination performance. Nonionic surfactant (Triton-X-100) was used in the interfacial polymerization of organic/inorganic nanocomposite RO membranes to improve the dispersion of MWCNTs in the polymer matrix. Scanning electron microscopy (SEM) images and X-ray diffraction (XRD) spectra confirmed that MWCNTs were uniformly distributed in the polymer matrix. When 0.1–1 wt% of MWCNTs were added to polyamide RO membranes, chlorine resistance was measurably improved compared to the conventional polyamide membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.