Abstract

Abstract The influence of latent heat storage elements on the cooling performance and the temperature rise time of household refrigerating is studied experimentally in the context of the “new global refrigerator standard” IEC 62552:2015 (IEC 62552:2015, 2015). In addition to the daily energy consumption, this international standardization introduced performance tests for cooling capacity and temperature rise time. While the cooling capacity has long been anchored in various test procedures of consumer organizations, the temperature rise time, which has only been tested on freezers so far, will be a decisive factor in the future. Moreover, the need for so-called smart appliances that may balance power consumption compensate the volatility of renewable energies and thus stabilize the power grid is increasing. Against this background, eight commercial household refrigerators and refrigerator-freezers are equipped with polymer-bound phase change materials (PCM) and their performance is determined under the new standard test conditions. The results show that the introduction of PCM increases the cooling capacity by up to 33 % and also increases the temperature rise time by up to 145 %, without affecting power consumption, as compared to the unmodified refrigeration appliances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.