Abstract

The remote maintenance of the ITER divertor is largely dependent on the usage of haptically teleoperated manipulators and man-in-the-loop operations. These maintenance operations are very demanding for the manipulator operators, yet vital for the success of the whole ITER experiment. Haptic shared control of the maintenance manipulators offers a promising solution for assisting the teleoperators in the maintenance tasks. A shared control system assists the operator by generating artificial guiding force effects and overlaying them on top of the haptic feedback from the teleoperation environment.An experimental haptic shared control system, called the Computer Assisted Teleoperation (CAT) has been developed at the Divertor Test Platform 2 (DTP2). In this paper, we investigate the design of the system and how the system integrates with the ITER compliant DTP2 prototype Remote Handling Control System (RHCS). We also experimentally assess the effect of the guidance to the operator performance in an ITER-relevant maintenance scenario using the Water Hydraulic MANipulator (WHMAN), which is specially designed for the divertor maintenance. The result of the experiment gives suggestive indication that the CAT system improves the performance of the operators of the system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call