Abstract

To improve the oxidation resistance under thermal shock condition of SiC-coated carbon/carbon (C/C) composites, ferrocene ((C5H5)2Fe) was introduced in the SiC coatings during the pack cementation process. The microstructure and oxidation resistance under thermal shock condition of modified SiC coated C/C composites were studied. The HNO3 treatment and the introduction of (C5H5)2Fe could raise the nucleation point and the decomposition of (C5H5)2Fe can slow down the sintering process, which helps to decreased the sizes of SiC particles and micro-defects (including micro-cracks and micro-holes) and resulted in a relatively dense structure. Thermal shock test revealed that the mass change rate of C/C composites decreased from 18.25% to 10.08% after thermal cycle test between 1773K and room temperature for 25 times, suggesting a better shock resistance for the modified SiC coating compared with the base coatings (without modification). This work provides a novel way to modify the SiC coating capable of releasing the thermal residual stress and decreasing the oxygen diffusion channels and then further increasing the oxidation resistance under thermal shock condition of C/C composites without other supplementary protective coatings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.