Abstract

Accelerated thermal cycling tests are used to ascertain the reliability of solder interconnects in electronics assemblies. These tests typically last a few months and therefore, are highly resource intensive. Thermal shock tests on the other hand are faster but have been found to be ineffective in accelerating thermal cycling failures for eutectic tin lead solder. In this paper, thermal shock testing is proposed as an alternative to conventional thermal cycling testing for lead-free solder interconnects using Sn, Ag and Cu (SAC) solder. Results from the thermal shock and thermal cycling testing of Ball-Grid-Array (BGA) components are presented. Failure analyses of the solder joints reveal the failure mode for thermal shock in comparison to thermal cycling testing. Numerical modeling results for the thermal cycling and thermal shock testing for lead free and eutectic lead solder are then presented and discussed. The simulation results agree with the experiments and theory is proposed to account for the similar trends between thermal cycling and thermal shock testing for lead free solder.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call