Abstract

ABSTRACTHyperbranched aromatic polyamide (HBP) was grafted successfully onto carbon fibers (CFs) on the basis of solution polymerization to enhance the interfacial adhesion strength of CF‐reinforced epoxy resin composites. The microstructure and interfacial properties of the CFs before and after decoration were researched. The results indicate that HBP was deposited uniformly onto the CFs with γ‐aminopropyl triethoxysilane as the bridging agent. The active groups, roughness, and surface energy of the modified fiber [hyperbranched aromatic polyamide grafted carbon fiber (CF–HBP)] increased visibly in comparison with those of the untreated CFs. The CF–HBP composites revealed simultaneous remarkable enhancements (65.3, 34.3, and 84.8%) in their interfacial shear strength, flexural strength, and modulus, respectively; this was attributed to the improvement in the fiber–epoxy interface through enhanced chemical interactions, mechanical interlocking, and wettability. These agreed with the scanning electron microscopy observations from the fracture surface morphologies of the composites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47232.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call