Abstract

The influences of both the molecular structure and the melt viscosity differences between Poly(lactic acid) (PLA) and polycarbonate (PC) on the interpenetration of molecular chains at the interface were investigated by comparing the dynamic mechanical properties and morphologies of the as‐prepared PLA/PC solution‐casting blends with those of their corresponding annealed (180°C, 8 h) samples or PLA/PC melt blends. Additionally, two chain extenders containing epoxy groups (ADR and TGDDM) were used to improve the interfacial strength. Subsequently, the interpenetration of PLA and PC molecular chains at the interface was also surveyed. Finally, the effects of the morphology formed by after adding ADR or TGDDM on the impact property, and heat resistance were discussed. The results showed that there was no interpenetration of molecular chains at the interface in PLA/PC melt blends because of the serious hindrance of the molecular structure and the melt viscosity differences. Although the interfacial strength achieved significant increase after adding ADR or TGDDM, the increase of the interfacial strength should be caused by the connection of ADR or TGDDM molecules with PLA and PC molecules at the interface through chemical bonds rather than the entanglements of PLA and PC molecular chains because of no interpenetration of PLA and PC molecular chains at the interface. Thus, the morphology formed after adding ADR or TGDDM is still the type of complete phase separation, which may be the most suitable morphology for achieving high impact and heat resistance PLA/PC blends because these two properties strongly depend on the crystallinity of PLA phase. Copyright © 2015 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.