Abstract

Prussian Blue Analogue (PBA)-Zn aqueous batteries are attractive because of the high potential of PBA against Zn (∼1.7 V), relative safety of the system, and high rate capability. But, despite the long cycle life of PBA half-cells, full PBA-Zn battery systems studied thus far have typically reported only up to 100 cycles and suffer significant capacity fade beyond that. In this work we demonstrate that the loss in capacity retention and cycle life is a combined effect of Zn2+ ion poisoning at the PBA cathode, as well as dendrite formation in the zinc anode. We address both these issues via the use of a dual ion (Na+ as the primary charge carrier) electrolyte and hyper-dendritic Zinc (HD Zn) as the anode. The copper hexacyanoferrate (CuHcf) vs. HD Zn system with Na+ ion electrolyte demonstrated herein exhibits 90% (83%) capacity retention after 300 (500) cycles at a 5C rate and a 3% reduction in usable capacity from 1C to 5C. Detailed characterization is done using in situ synchrotron energy-dispersive XRD (EDXRD), conventional XRD, XPS, SEM, TEM, and electrochemical techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.