Abstract

Novel zinc anodes are synthesized via electroplating with organic additives in the plating solution. The selected organic additives are cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS), polyethylene-glycol (PEG-8000), and thiourea (TU). The synthesized zinc anode materials, namely, Zn-CTAB, Zn-SDS, Zn-PEG, and Zn-TU, are characterized by powder X-ray diffraction and scanning electron microscopy. The results show that each additive produces distinctively different crystallographic orientation and surface texture. The surface electrochemical activity is characterized by linear polarization when the zinc is in contact with the battery's electrolyte. Tafel fitting on the linear polarization data reveals that the synthetic zinc materials using organic additives all exhibit 6-30 times lower corrosion currents. When using Zn-SDS as the anode in the rechargeable hybrid aqueous battery, the float current decreases as much as 2.5 times. The batteries with Zn-SDS, Zn-PEG, and Zn-TU anodes display the capacity retention of 79%, 76%, and 80% after 1000 cycles of charge-discharge at 4C rate, whereas only 67% obtained from the batteries using the anode prepared from commercial zinc foil. Among these electroplated anodes, Zn-SDS is the most suitable for aqueous batteries thanks to its low corrosion rate, low dendrite formation, low float current, and high capacity retention after 1000 cycles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.